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Abstract. The steady-state microwave heating of a finite one-dimensional slab is examined. The temperature
dependency of the electrical conductivity and the thermal absorptivity is assumed to be governed by the Arrhenius
law, while both the electrical permittivity and magnetic permeability are assumed constant. The governing equations
are the steady-state versions of the forced heat equation and Maxwell’s Equations while the boundary conditions
take into account both convective and radiative heat loss. Approximate analytical solutions, valid for small
thermal absorptivity, are found for the steady-state temperature and the electric-field amplitude using the Galerkin
method. As the Arrhenius law is not amenable analytically, it is approximated by a rational-cubic function. At
the steady-state the temperature versus power relationship is found to be multivalued; at the critical power level
thermal runaway occurs when the temperature jumps from the lower (cool) temperature branch to the upper
(hot) temperature branch of the solution. The approximate analytical solutions are compared with the numerical
solutions of the governing equations in the limits of small and large heat-loss and also for an intermediate case
involving radiative heat-loss.
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1. Introduction

There is growing interest in the use of microwave radiation in industrial processes such as
drying, smelting, sintering, melting and sterilising. The main advantage of microwave heating
over conventional convective heating methods is that the processing time can be dramatically
reduced. The microwave processing of a material can be difficult to control however; thermal
runaway can occur for a small increase in the incident power, resulting in a large and rapid
increase in the material’s temperature.

The equations governing the microwave heating of a material are Maxwell’s Equations
governing the propagation of microwave radiation through the material, and the forced heat
equation governing the heat absorption and the resultant heat diffusion, with the heat absorp-
tion being proportional to the square of the amplitude of the electric field. In general, the
properties of the material, such as electrical conductivity, electrical permittivity and magnetic
permeability are temperature dependent. As the rate of heat absorption in the material increases
with temperature, hence as the temperature increases so does the heat absorption, which can
then lead to thermal runaway. Thermal runaway, can sometimes be beneficial to the industrial
process, such as in the smelting of metals, but is usually harmful, such as in the drying of wool
(see Aranetaet al. [1]) or in the sintering of ceramics.

Due to its destructive nature, it is important to understand and hence predict the occurence
of thermal runaway. The governing equations of microwave heating are coupled in a nonlinear
manner through the temperature dependence of the material properties and consequently
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220 T. R. Marchant and B. Liu

exact analytical solutions are rarely available. Also, numerical solutions are computationally
expensive, particularly for a realistic three-dimensional geometry appropriate for an industrial
process. Due to the difficulties with both exact and numerical solutions, the aim of this paper is
to develop an approximate analytical solution which can describe and predict thermal runaway.

The mathematical modelling of microwave heating has generated a lot of interest in the
last few years; the survey article of Hill and Marchant [2] details much of this work. If
the initial propagation of microwave radiation, and the subsequent heating of the material
are of interest, then perturbation solutions for the electric field and the temperature can be
found. Smyth [3] and Marchant and Pincombe [4] considered high-frequency radiation (the
geometrical optics limit) and small thermal diffusivity to develop perturbation solutions using
the method of strained co-ordinates with the electrical conductivity, electrical permittivity and
magnetic permeability all assumed to be slowly-varying with a power-law dependence on
temperature. Smyth [3] found series solutions for a semi-infinite slab, cylindrically symmetric
and spherically symmetric bodies, while Marchant and Pincombe [4] developed perturbation
solutions which illustrate the process of thermal runaway and compared it to numerical
solutions of the governing equations.

Pincombe and Smyth [5] considered all the material properties to be slowly-varying func-
tions of space and time. In addition, the electrical conductivity and thermal absorptivity were
assumed to be small. A perturbation solution was developed using the method of multiple
scales and in the case of constant microwave speed some analytical solutions for the first-order
amplitude were found, including cases where thermal runaway occurs. In addition, numerical
solutions were developed for the case in which the wavespeed is temperature dependent.

Alternatively, if the thermal aspects are isolated, the forced heat equation

Tt = �Txx + 
(T ); (1.1)

is considered, where
(T ) is the temperature dependent rate of microwave absorption by
the material (the thermal absorptivity) and the constant electric-field amplitude is normalised
to unity. Roussy et al. [6] numerically solved (1.1) for a cylindrical body with the thermal
absorptivity dependent on a quadratic function of temperature


 = 
0 + 
1T + 
2T
2; (1.2)

with a convective heat-loss boundary condition. Hill and Smyth [7] considered (1.1) for
planar, cylindrical and spherical geometries with a fixed temperature boundary condition and
found steady-state solutions. They assumed that in the regions of parameter space where
steady-state solutions do not occur, thermal runaway does, due to the exponential thermal
absorptivity. Also, for some parameter values, two steady-state solutions exist, with the higher
temperature profile unstable and the lower temperature profile stable.

Marchant [9] in a study of materials with impurities and microwave joining considered


 = 
0 + (
1 + 
2T

3)�(x); (1.3)

where�(x) is the Dirac-delta function. This represented a material of constant thermal absorp-
tivity with an impurity atx = 0. At the impurity there is a source of additional temperature-
dependent thermal absorptivity. Steady-state solutions and conditions for thermal runaway
were found for a one-dimensional slab.
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Zhu et al. [9] considered various versions of the one and two-dimensional forced heat
equations as models for microwave joining and welding. For these models exact steady-
state solutions did not exist, however approximate governing equations were found using a
method developed by Frank–Kamenetskii in the study of chemical reactions. This allowed
approximate conditions for thermal runaway to be developed, which were found to be very
close to the numerical results.

Kriegsmannet al. [10] considered a semi-infinite material with temperature-dependent
electrical conductivity and constant magnetic permeability and electrical permittivity. The
electrical conductivity was assumed to be small and a perturbation solution was found as a
series in the low conductivity. Because a radiative boundary condition was used, heat can
escape from the material and hence steady-state solutions occur. For this model there is one
steady-state temperature profile for each power level so thermal runaway does not occur.

Kriegsmann [11] derived a steady-state solution for a finite one-dimensional slab by
expanding the temperature and electric-field amplitude as a perturbation series in the small
Biot-number. As there was small heat-loss through the boundaries the temperature profile was
found to be uniform in this limit. This allowed the forced heat equation to be integrated over
the slab which gave an equation describing the relationship between the steady-state power
and temperature. The temperature versus power curve was an S-shaped curve implying ther-
mal runaway occurs at a critical power level as the solution jumps to a stable high temperature
solution. As the electric-field amplitude and the temperature are coupled, the thermal runaway
is stabilised at a new hot steady-state because the increased temperature causes decay of
the electric-field amplitude in the slab which in turn limits the heat absorption. The results
obtained contained those of the thin slab and thick slab as limiting cases.

In a related study Kriegsmann [12] derived a nonlinear amplitude equation which described
the time evolution of the material’s temperature in the small Biot-number limit. Depending
on the initial conditions, such as the incident microwave power, the system either evolved to
the lower (cool) branch of the S-shaped curve mentioned above or to the upper (hot) branch.

Marchant and Kriegsmann [13] considered the forced heat equation and a steady-state
version of Maxwell’s Equations together with boundary conditions appropriate for one-
dimensional slab. The Rayleigh–Ritz method was used to develop approximate analytical
expressions for the temperature and electric-field amplitude together with an ordinary dif-
ferential equation describing the evolution of the temperature to the steady-state . At the
steady-state the temperature versus power relationship is S-shaped. Power-law and expo-
nential temperature dependencies were considered for the electric conductivity (which is
assumed small) and thermal absorptivity. Examples were presented in both the small and large
Biot-number limits with a good comparison obtained between the approximate analytical
solutions and the numerical solutions.

In this paper the steady-state heating of a one-dimensional slab by microwave radiation
is considered with the temperature dependencies of the electrical conductivity and thermal
absorptivity governed by the Arrhenius law. Both the electrical permittivity and the magnetic
permeability are assumed constant. In Section 2 the governing equations are derived. These are
steady-state versions of the forced heat equation, which describes the absorption and diffusion
of heat and Maxwell’s Equations which describes the electric-field amplitude in the slab.
In Section 3 the method of Marchant and Kriegsmann [13] is used to develop approximate
expressions, valid for small thermal absorptivity, for the steady-state temperature and electric-
field amplitude in the slab. In order to develop these approximate analytical solutions the
Arrhenius law is approximated by a rational-cubic function. Examples are presented in the
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limits of small and large heat-loss and for an intermediate case, which involves radiative
heat-loss. The approximate analytical solutions of Section 3 are compared with numerical
solutions of the governing equations. In Section 4 some concluding remarks are made and
future extensions, to models of microwave heating in higher-dimensions, discussed. The
scheme used for the numerical solutions is detailed in the appendix.

2. Governing equations

The equations which govern the microwave heating of a material are Maxwell’s Equations,
which govern the propagation of the microwave radiation, and the forced heat equation,
which governs the absorption and diffusion of heat by the material. Maxwell’s Equations of
electormagnetism are (see Portis [14], p. 381–384)

r � ("E) = �; r � (�H) = 0;

r� E = �
@

@t
(�H); r� H =

@

@t
("E) + �E;

(2.1)

whereE is the electric field, andH is the magnetic field. The material properties are�, the
electrical conductivity,", the electrical permittivity and�, the magnetic permeability. The
electrical conductivity is dependent on the temperature whilst the magnetic permeability and
electrical permittivity are assumed constant.

For a plane wave propagation in a slab we haveE = E(x; t)j andH = H(x; t)k, which
when substituted into (2.1) gives

Ex = ��Ht; Hx = �"Et � �E; (2.2)

where it has been assumed that the net free charge� is zero. The electric and magnetic fields
are written as amplitude terms modulated by the frequency

E(x; t) = U(x)e�i!t; H(x; t) = V (x)e�i!t: (2.3)

As the time scale for electromagnetic propagation is much smaller than the time scale for
thermal diffusion the time derivatives of the electric and magnetic field amplitudes,U andV ,
and of the electrical conductivity,�, can be ignored. Substituting (2.3) in (2.2) gives

Uxx + k2
1

�
1+

i�

!"

�
U = 0; (2.4)

as the governing equation for the steady-state electric-field amplitude, where the wavenumber
k1 = !=c, with c being the speed of the radiation in the material. Note that the same governing
Equation (2.4) is obtained even when the electrical permittivity depends on temperature; the
later analysis is simplified however, by the assumption of constant electrical permittivity.

Equation (2.4) is coupled with the forced heat equation

Tt = �Txx + 
(T )jU j2;

where

� = �f(T ); 
 = �f(T ); (2.5)
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where� is the thermal diffusivity which is assumed constant and
 is the thermal absorp-
tivity which is temperature dependent. The thermal absorption depends on the square of the
electric-field amplitude. The time harmonic form of electric field (2.3) means that the heat
source term has been averaged over a microwave period (see Kriegsmannet al. [10]). The
same form of temperature dependencyf(T ), is chosen for the electrical conductivity and the
thermal absorptivity as physically it is expected from conservation of energy that the energy
lost by the microwaves is absorbed as heat.

The electric field and its derivative are continuous at the boundaries of the slab(x = �l)
so the boundary conditions are

Ex(�l; t) + ikE(�l; t) = 2ikE e�i!t;

Ex(l; t)� ikE(l; t) = 0;
(2.6)

wherek = !=c0. The parametersk andc0 are the wavenumber and velocity of the radiation
in free space respectively.

The steady-state amplitude Equation (2.4), the steady-state version of the forced heat
equation (2.5) and the boundary conditions for the electric field (2.6) are made non-dimensional
by the scalings

t0 =
t�

l2
; x0 =

x

l
; E0 =

E

Ei
; T 0 =

T

Ti
� 1; (2.7)

where 2l is the length of the slab,Ei is the amplitude of the incident radiation,� is the thermal
diffusivity andTi is the ambient temperature. This results in the scaled frequency, thermal
absorptivity, electrical conductivity and wavenumbers having the forms

!0 =
!l2

�
; 
0 =

l2E2
i 


�Ti
; �0 =

�

!"
; k01 = k1l; k0 = kl: (2.8)

The steady-state governing equations can then be written (after dropping the primes) as

Uxx + k2
1(1+ i�)U = 0; Txx + 
jU j2 = 0; (2.9)

where the Arrhenius law,

f(T ) = �1 + �1 e�(
1=T ); (2.10)

is used for the temperature dependency. This law is physically motivated from statistical
mechanics and is bounded as the temperature becomes large.

The boundary conditions for the electric field amplitude and the temperature are

Ux + ikU = 2ik; x = �1; Ux � ikU = 0; x = 1;

Tx �BiT � S((T + 1)4� 1) = 0; x = �1;
(2.11)

where both convective and radiative heat loss occurs at each end of the slab. The Biot number,
Bi, is a measure of the convective heat loss and the radiation-numberS, is a measure of the
radiative heat loss. Note that the ambient temperature has been scaled to zero. In the small heat
loss limit (Bi; S ! 0) a zero heat flux boundary condition is obtained. In the large heat-loss
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limit (Bi; S !1) a fixed temperature boundary condition is applied. The thermally insulated
boundary condition is a good approximation for dielectric materials as the Biot and radiation
numbers are small (for example,Bi; S � 10�4 for ceramics, see Kriegsmann [13]).

Usually the material properties are measured experimentally in terms of the relative dielec-
tric constant"0 and the relative dielectric loss"00. In terms of the non-dimensional parameters
of (2.8) they can be written as

"0 =
k2

1

k2 ; "00 =
k2

1�

k2 : (2.12)

In a semi-infinite material with small electrical conductivity the electric-field amplitude in the
slab is given by

U(x) = U0 e�k1�(x=2): (2.13)

Hence the electric-field amplitude decays on a length scale of(k1�)
�1. Due to the scaling

of k1 (see (2.8)), the decay length scale increases as the slab lengthl ! 0. Hence the thin-
slab limit with constant electric-field amplitude is obtained. Conversely, the thick-slab limit
l ! 1 results in the decay length scale decreasing to zero. Here a ‘skin effect’ results with
the electric-field amplitude decaying quickly to zero in the slab. It should be noted that the
frequency of the microwave radiation affects the decay of the electric-field amplitude also
(see the scaling of� in (2.8)). For example, increasing the frequency,!, decreases the scaled
electrical conductivity, resulting in a longer decay length. By calculating the decay length
scale(k1�)

�1 from the associated parameters it is possible to determine if either the thick or
thin-slab limit is appropriate for a particular example.

3. Approximate steady-state solutions

In this section approximate analytical expressions for the steady-state temperature and the
electric-field amplitude in the slab are developed. At the steady state the temperature versus
power relationship is found, which is described by a S-shaped curve, hence thermal runaway
occurs at a critical power level as the solution jumps from the lower (cool) branch to the upper
(hot) branch of the solution.

3.1. THE RATIONAL-CUBIC APPROXIMATION

The Arrhenius law (2.10) is a physically appropriate choice of temperature dependency for
the electrical conductivity and the thermal absorptivity. However, it is unsuitable for analytical
work, so an approximation to (2.10) must be used. Marchant [15] showed that a rational-cubic
function was an extremely accurate approximation to the Arrhenius law in the case of the
microwave welding of a one-dimensional slab. Hence a rational-cubic function of the form

f(T ) =
R1(T )

R2(T )
;

where

Ri(T ) =
3X

j=0

rijT
j; i = 1;2;

r10 = �1; r20 = 1; r13 = (�1 + �1)r23;

(3.1)

engi612.tex; 14/05/1998; 13:53; v.7; p.6



The steady-state microwave heating of slabs225

is used to approximate the Arrhenius law here. At the ambient temperature, the rational-cubic
functionf(0) = �1, while f ! �1 + �1 asT !1. Hence the rational-cubic function is the
same as the Arrhenius law (2.10) in the limits of small and large temperatures. The remaining
parameters (the undeterminedri;j) are chosen using the method of least squares. The sum of
the squares

S =
nX
i=1

�
�1 + �1 e�(
1=Ti) �

R1(Ti)

R2(Ti)

�2

; Ti =
i

n
T0; (3.2)

over the temperature rangeT 2 [0; T0] is considered. The sumS is minimised if therij are
chosen to satisfy

@S

@rij
= 0: (3.3)

Note that (3.3) represents five nonlinear algebraic equations for the undetermined parameters.
In the subsequent sections the Arrhenius law (2.10) is considered with the parameters

�1 = 
1 = 1; �1 = 20: (3.4)

The Equations (3.3) are solved using the IMSL routine, dnegnf, which gives the parameters
as

r11 = 5�469; r12 = �43�34; r21 = 2�534;

r22 = 8�255; r23 = 10�71:
(3.5)

The parameters (3.5) were found withT0 = 10 andn = 2�107 in (3.2). The average deviation
between the Arrhenius law (2.10) and the rational-cubic function (3.1) at each point in the

sum is
q

S
n = 0�013. The error in the approximation is largest at low temperature levels (up

to 4 percent nearf = 1), while at higher temperature levels the error is insignificant.
Besides the Arrhenius law, other forms of temperature dependency are valid for some

materials. Hill and Jennings [8] analysed the experimental data collected for various materials
and found various simple analytical forms forf(T ). They found that, in general, the thermal
absorptivity increases with temperature. However, it can also decrease with temperature over
a limited temperature range. In particular, they found linear, quadratic and exponential depen-
dencies, of the form� e�T and�e��(Y�
)

2
, are valid for many materials. Like the Arrhenius

law, the exponential dependencies are not amenable to analysis and would need to be approxi-
mated by a polynomial function. Hill and Jennings [16] showed to get a good fit to the various
exponential dependencies that a quintic function needs to be used. The approximate method
developed in this section would be able to deal with quintic functions quite easily; the result-
ing expressions will just be longer and more complicated. The rational-cubic approximation
for the Arrhenius law is valid for all temperatures, while a polynomial approximation to an
exponential dependency can only be valid over a finite temperature range. However, as long as
the polynomial approximation is valid for the temperature range over which thermal runaway
occurs, the approximate analytical solutions can be expected to be accurate.
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3.2. THE APPROXIMATE EQUATIONS

In the small heat-loss limit Kriegsmann [11] found that the temperature profile in the slab to
lowest-order was uniform which allows the steady-state amplitude equation (the first of (2.9))
to be solved exactly and the steady-state temperature versus power relationship to be found by
integrating the forced heat equation over the slab. Here this method is generalised for arbitrary
Biot and radiation numbers by assuming basis functions, which satisfy the boundary conditions
(2.11), for the temperature and the electric-field amplitude. The parameters associated with the
trial solutions are found by applying the Galerkin method, which requires the basis functions
to satisfy averaged versions of the governing Equations (2.9). The resulting expressions then
describe the temperature and electric-field amplitude at the steady state. In addition the steady-
state temperature versus power relationship is obtained.

Firstly, the governing Equations (2.9) are written in the form

TxxR2(T ) + �R1(T )jU j
2 = 0;

UxxR2(T ) + k2
1(R2(T ) + i�R1(T ))U = 0;

(3.6)

where the Arrhenius law (2.10) has been approximated by the rational-cubic function (3.1).
In addition both equations have been multiplied by the denominator of the rational-cubic
function so that analytically amenable expressions are obtained.

Generally, the Galerkin method requires that the exact solution be approximated by a sum
of orthogonal basis functions. The parameters associated with the basis functions are found
by evaluating averaged versions of the governing equations, weighted by the basis functions
themselves. Here the simplest application of the method is used, with both the electric-field
amplitude and the temperature each represented by one basis function only. The approximate
solutions have the form

T (x) = C�1(x); U(x) = �2(x; a); (3.7)

whereC anda are parameters to be determined. The basis functions (3.7) for the temperature
and the electric-field amplitude will be chosen to satisfy the boundary conditions (2.11)
exactly, but will satisfy averaged versions of the governing equations

Z 1

�1
!1(C�1xxR2(C�1) + �R1(C�1)j�2j

2)dx = 0;

Z 1

�1
!2(�2xxR2(C�1) + k2

1(R2(C�1) + i�R1(C�1))�2)dx = 0;

(3.8)

where the integrals are weighted by!1 and!2, normally chosen as the basis functions�1 and
�2 respectively.

To find a suitable basis function for the temperature the time-dependent unforced heat
Equation ((2.3) with
 = 0 and� = 1) subject to a convective heat-loss boundary condition
((2.11) withS = 0) is considered. This has the solution

T (x; t) =
1X
n=1

an e��nt cos(�1=2
n x); Bi = �1=2

n tan(�1=2
n ); (3.9)
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where the coefficientsan are determined from the initial temperature profile. The solution
describes the decay from the initial profile to the ambient temperature as heat is convected
away through the boundaries. Hence

�1(x) = cos(�1=2x); (3.10)

is chosen as the basis function for the temperature. The temperature profile (3.7) is symmetric
with a maximumC at the slab’s centre. This approximate solution will be valid when the
thermal absorption of microwave energy is fairly small, which generally means the lower
(cooler) branch of the S-shaped power versus temperature curve.

When no radiative heat-loss occurs� in (3.10) corresponds to the smallest eigenvalue of
(3.9). The basis function is then valid at long time as it decays more slowly than the other
eigenfunctions. If the radiative heat-loss is finite then the value of� changes. The boundary
condition (2.11) gives the transcendental equation

Bi = �1 tan�1� S(C3 cos3 �1 + 4C2 cos2 �1 + 6C cos�1 + 4); (3.11)

for �, where�1 = �1=2. The heat-loss parameter� is a measure of the combined convective
and radiative heat-loss. The parameter� varies from zero, in the limit of no heat-loss, to�2=4,
in the large heat-loss limit. When no radiative heat-loss occurs the heat-loss parameter� is
fixed. But when the radiation-number is finite� varies as the temperatureC changes.

The basis function for the electric-field amplitude is chosen as

�2(x) = A(a) cosh(ax) +B(a) sinh(ax);

A(a) = �ik(a sinh(a)� ik cosh(a))�1;

B(a) = ik(a cosh(a)� ik sinh(a))�1;

(3.12)

where the constantsA andB are found from the boundary condition (2.11). This form of
basis function is chosen as it is the solution of the first of (2.9) in the special case of constant
electrical conductivity, in which case the decay rate is

a = ik1(1+ i�)1=2: (3.13)

For the general case when the electrical conductivity is temperature dependent, the decay
ratea is found from the averaged amplitude equation (the second of (3.8)), using the weight
!2 = ��1

2 . This gives the decay rate as

a(C) = ik1

"
1+ i�

 R 1
�1R1(C�1)dxR 1
�1R2(C�1)dx

!#1=2

: (3.14)

This choice of weight,!2 = ��1
2 , is unusual, however it is chosen as it gives a simple explicit

expression for the decay ratea. The more usual weight!2 = �2, gives an implicit relationship
for awhich, together with (3.16), would need to be solved numerically fora andC. Moreover,
numerical calculations show that there is very little change in the decay ratea in the large
heat-loss limit when the choice of weight is varied (the choice of weight makes no difference
to a in the small heat-loss limit).
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Substituting for the basis function (3.10) in (3.14) gives

a(C) = ik1

�
1+ i�

I1

I2

�1=2

;

where

Ii = 2ri0 + 2ri1C
sin(�1)

�1
+ ri2C

2
�

1+
sin(2�1)

2�1

�

+ri3C
3
�

3 sin(�1)

2�1
+

sin(3�1)

6�1

�
; i = 1;2;

(3.15)

for the decay ratea. Using the weight!1 = �1 in the averaged forced heat equation (the first
of (3.8)) leads to the following transcendental equation

� =
�Cg2

g1
;

where

g1(C; a) =

Z 1

�1
�1R1(C�1)j�2j

2 dx;

g2(C; a) =

Z 1

�1
�2

1R2(C�1)dx:

(3.16)

The parameter� is the ratio of the steady-state power absorbed by the material to the heat
lost at the boundaries due to convection and radiation. Since
 has been scaled by the square
of the incident electric-field amplitude,E2

i , (see (2.8)) the parameter� is proportional to the
incident power. Hence the expression (3.16) gives the dimensionless power as a function of
the temperatureC. The expression (3.16) is simply referred to as the temperature versus power
(C versus�) curve.

In order to facilitate the calculation of the integralg1 in (3.16) the square of the electric-field
amplitude is written as

j�2j
2 = a1 cosh(2ux) + b1 cos(2vx);

where

a = u+ iv; 2a = A �A+B �B; 2b1 = A �A�B �B: (3.17)

The new parametersa1; b1; u andv are all real. Also note that the expression (3.17) contains
only the symmetric terms ofj�2j

2 as the nonsymmetric terms integrate to zero in (3.16).
Substituting the basis functions (3.10) and (3.12) into (3.16) gives the integralg1 as

g1 =

 
r11C

2
+

3r13C
3

8

!
(a1u

�1 sinh(2u) + b1v
�1 sin(2v))

+b

 
4r10+ 3r12C

2

4

! 
sin(�1� 2v)
�1� 2v

+
sin(�1 + 2v)
�1 + 2v

!
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+a1

 
4r10 + 3r12C

2

4�2
1 + 16u2

!
(4u cos(�1) sinh(2u) + 2�1 sin(�1) cosh(2u))

+a1
(r11C + r13C

3)

2�2
1 + 2u2

(u sinh(2u) cos(2�1) + �1 sin(2�1) cosh(2u))

+b1
(r11C + r13C

3)

2

�
sin(2�1� 2v)

2�1� 2v
+

sin(2�1 + 2v)
2�1 + 2v

�

+b1
r12C

2

4

�
sin(3�1� 2v)

3�1� 2v
+

sin(3�1 + 2v)
3�1 + 2v

�

+a1
r12C

2

18�2
1 + 8u2

(2u sinh(2u) cos(3�1) + 3�1 sin(3�1) cosh(2u))

+a1
r13C

3

32�2
1 + 8u2

(u sinh(2u) cos(4�1) + 2�1 sin(4�1) cosh(2u))

+b1
r13C

3

8

�
sin(4�1� 2v)

4�1� 2v
+

sin(4�1 + 2v)
4�1 + 2v

�
; (3.18)

and the integralg2 as

g2 = r20 +
3r22C

2

4
+ (6r21C + 5r23C

3)
sin(�1)

4�1

+(r20 + r22C
2)

sin(2�1)

2�1
+ (4r21C + 5r23C

3)
sin(3�1)

24�1

+r22C
2sin(4�1)

16�1
+ r23C

3sin(5�1)

40�1
:

(3.19)

If the maximum temperatureC is given then the decay ratea can be found from (3.15)
and the heat-loss parameter� can be found from (3.11). In general, when radiative heat loss
occurs, (3.11) must be solved numerically (for example, by Newton’s method) for�. When the
decay rate has been determined the coefficientsA(a) andB(a) in (3.12) and the parameters
a1; b1; u andv from (3.17) can all be calculated. Lastly, the integralsg1 andg2 are calculated
from (3.18) and (3.19) and hence the power� can be determined from (3.16).

3.3. RESULTS AND DISCUSSION

The expressions fora; g1 andg2 can be simplified in the small and large heat-loss limits. In
the limit of small heat loss

�! Bi + S(C3 + 4C2 + 6C + 4) as Bi; S ! 0: (3.20)

In this limit the integralsa; g1 andg2 become

a = ik1(1+ i�f(C))1=2;

g1 = R1(C)(a1u
�1 sinh(2u) + b1v

�1 sin(2v));

g2 = 2R2(C):

(3.21)

engi612.tex; 14/05/1998; 13:53; v.7; p.11



230 T. R. Marchant and B. Liu

Figure 1. The steady-state temperature versus power curve(C versus�=�) in the small Biot-number limit. The
parameters areBi = 0�1; S = 0; k = k1 = 1; � = 5� 10�3 and�x = 1� 10�3. Shown are the results by small
Biot-number theory, (3.16) witha; g1 andg2 given by (3.21) (—), and the numerical solution(� � �).

The steady-state temperature versus power relationship in the small heat-loss limit, (3.16)
with a; g1 andg2 given by (3.21), is the same as that found using the small Biot number
theory of Kriegsmann [12]. Figure 1 shows the steady-state temperature versus power curve
(C versus�=�) in the limit of small Biot-number and no radiative heat loss. The parameters
areBi = 0�1; S = 0; k = k1 = 1; � = 5� 10�3 and�x = 1� 10�3. Shown are the results
by small Biot number theory, (3.16) witha; g1 andg2 given by (3.21) (—), and the numerical
solution (� � �). The comparison between the numerical and theoretical results is excellent, with
only a small variation, of up to 6 percent at�=� = 0:3, on the upper (hot) solution branch.
No numerical results are available for the second branch (where dC/d� < 0) as this region
of the solution is unstable. As the heat loss is small the temperature profile is nearly uniform.
The approximate analytical solution is exact in this limit. As� ! 0 the temperature profile
becomes uniform,T = cos(�1=2x) ! C, and the decay rate (3.21) is exact because of the
uniform temperature.

In the limit of large heat-loss,

� =
�2

4
as Bi; S !1: (3.22)

In this limit the decay ratea is

a = ik1

�
1+ i�

J1

J2

�1=2

;

where

Ji = 2ri0 +
4ri1C
�

+ ri2C
2 +

8ri3C3

3�
; i = 1;2; (3.23)

while the integralsg1 andg2 become

g1 =

 
r11C

2
+

3r13C
3

8

!
(a1u

�1 sinh(2u) + b1v
�1 sin(2v))

+(4r10 + 3r12C
2)

�
�a1

�2 + 16u2 cosh(2u) +
�b1

�2� 16v2 cos(2v)
�
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Figure 2. The steady-state temperature versus power curve(C versus�) in the large heat-loss limit. The parameters
arek = k1 = 1; � = 5� 10�3 and�x = 1� 10�3. Shown are the results by large heat-loss theory, (3.16) with
a; g1 andg2 given by (3.23) and (3.24) (—), and the numerical solution(� � �).

�(r11C + r13C
3)

�
a1

�2 + 4u22u sinh(2u)�
b1

�2� 4v22v sin(2v)
�

+
r13C

3

8

�
a1

�2 + u2u sinh(2u)�
b1v

�2� v2 sin(2v)
�
; (3.24)

g2 = r20 +
8r21C

3�
+

3r22C
2

4
+

32r23C
3

15�
:

Figure 2 shows that steady-state temperature versus power curve(C versus�) in the large heat-
loss limit (Bi; S !1). The parameters arek = k1 = 1; � = 5� 10�3 and�x = 1� 10�3.
Shown are the results by large heat-loss theory, (3.16) witha; g1 andg2 given by (3.23) and
(3.24) (—), and the numerical solution(� � �). On the lower (cool) branch the theory and the
numerical solution are the same to graphical accuracy with the critical� at which the solution
jumps to the upper (hot) branch, and hence undergoes thermal runaway, accurately predicted
by the theory. On the upper (hot) branch the comparison is still good with a variation, of up
to 9 percent at� = 0�7. This discrepancy is due to the form of the basis functions being
less realistic at high temperature levels. For example, the basis function for the electric-field
amplitude assumes uniform temperature in the slab, which is less valid as the temperature
increases. Moreover, the assumed symmetry of the temperature profile breaks down. The
increased electrical conductivity causes decay of the electric-field amplitude in the slab. As
the amplitude of the microwave radiation which penetrates into the centre of the slab is
reduced, there is less heat absorption and consequently a non-symmetric temperature profile
occurs.

Figure 3 and 4 show the temperature profile and the electric-field amplitude for the same
parameters as Figure 2 with a power level� = 0�4. Shown are the results by large heat-loss
theory, (3.10) and (3.12) witha; g1 andg2 given by (3.23) and (3.24) (—), and the numerical
solution(� � �). This power level corresponds to the lower (cool) solution branch just before
thermal runaway occurs. As the decay of the electric-field amplitude is small (around 0.5
percent) heat is absorbed fairly evenly across the slab resulting in a symmetric temperature
profile. Consequently the comparison between the theoretical and numerical temperature
profiles is excellent with the maximum temperature varying by no more than 3 percent.
Also, the temperature is fairly uniform in the slab (asC � 0�2 is small) so the electric-field
amplitude, as predicted by the approximate theory, is very close to the numerical solution.
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Figure 3. The steady-state temperature profile versusx in the large heat-loss limit. The parameters arek = k1 =
1; � = 0�4; � = 5� 10�3 and�x = 1� 10�3. Shown are the data by large heat-loss theory, (3.10) witha; g1

andg2 given by (3.23) and (3.24) (—), and the numerical solution(� � �).

Figure 4. The steady-state electric-field amplitude versusx in the large heat-loss limit. The parameters are
k = k1 = 1; � = 0�4; � = 5� 10�3 and�x = 1� 10�3. Shown are the data by large heat-loss theory, (3.12)
with a; g1 andg2 given by (3.23) and (3.24) (—), and the numerical solution(� � �).

Figure 5 shows the steady-state temperature versus power curve(C versus�=Bi) for small
Biot and radiation numbers. The parameters areBi = 0:1; S = 0:1; k = k1 = 1; � = 5�10�3

and�x = 1� 10�3. Shown are the data by the theory, (3.16) witha; g1 andg2 given by
(3.15), (3.18) and (3.19) (—), and the numerical solution (� � �). In this case only the lower
(cool) solution branch can be described using the small heat-loss theory (3.21). This occurs
because the radiative heat-loss increases nonlinearly as the power, and hence the temperature

Figure 5. The steady-state temperature versus power curve(C versus�=Bi) for small Biot and radiation numbers.
The parameters areBi = 0�1; S = 0�1; k = k1 = 1; � = 5� 10�3 and�x = 1� 10�3. Shown are the data by
the theory, (3.16) witha; g1 andg2 given by (3.15), (3.18) and (3.19) (—), and the numerical solution(� � �).
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Figure 6. The heat-loss parameter versus power(� versus�=Bi) for small Biot and radiation numbers. The
parameters areBi = 0�1; S = 0�1; k = k1 = 1; � = 5� 10�3 and�x = 1� 10�3. Shown are the data by the
theory, (3.16) witha; g1 andg2 given by (3.15), (3.18) and (3.19) (—), and the numerical solution(� � �).

Figure 7. The steady-state temperature versus decay rate(C versus�) for the large heat-loss limit. The parameters
arek = k1 = 1;�x = 1� 10�3 for � = 0�15; 0�3 and 0�6. Shown are the data by theory, (3.16) witha; g1 andg2

given by (3.23) and (3.24) (—), and the numerical solution(� � �).

C, increases. The analytical and the numerical solutions differ by no more than 1 percent (at
�=Bi = 1�6) on both solution branches. Figure 6 shows the heat-loss parameter versus power
(� versus�=Bi) for the same parameters as Figure 5. Shown are the data by the theory, (3.11)
with a; g1 andg2 given by (3.15), (3.18) and (3.19) (—), and the numerical solution(� � �).
As the Biot and radiation numbers are small the lower (cool) solution branch corresponds to
the small heat-loss case, with� given approximately by (3.20). However as the temperature
C increases the radiative heat-loss also increases and the expression (3.11) must be used
to calculate�. As the power (and the temperatureC) increase further the large heat-loss
limit, � ! �2=4, is approached on the upper (hot) solution branch, where the analytical and
numerical solutions vary, by up to 9 percent at�=Bi = 1�6.

3.4. VALIDITY OF THE APPROXIMATE SOLUTIONS

The basis functions for the temperature and the electric-field amplitude are valid in the limit
of low thermal absorptivity and uniform temperature respectively. These assumptions are
true in the small heat-loss limit as the temperature profile is nearly uniform, and the thermal
absorptivity is small (small heat-loss implies small thermal absorptivity at the steady-state).
Consequently, the approximate analytical solutions are very accurate in this case (see Figure 1).

Figure 7 shows the steady-state temperature versus decay rate(C versus�) for the large
heat-loss limit. The parameters arek = k1 = 1;�x = 1� 10�3 for � = 0�15;0�3 and 0�6.
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Shown are the data by theory, (3.16) witha; g1 andg2 given by (3.23) and (3.24) (—), and
the numerical solution(� � �). For a given value of the decay rate� the temperature increases
as the power� increases. Hence� = 0�15 is the lowest curve and� = 0�6 is the highest
curve on the graph. As the decay rate� increases lower slab temperatures are obtained. This
is because the electric-field amplitude decays more quickly in the material limiting the total
energy which can be absorbed. For the lowest power level(� = 0�15) the temperature is very
small for all values of� as it remains on the lower (cool) branch of the S-shaped power versus
temperature curve. For the larger values of the power� however, the solution is on the upper
branch for small� and on the lower branch for large�.

The comparison between the theoretical and numerical results is excellent at lower tem-
perature levels, which generally corresponds to the lower branch of the S-shaped curve. When
the decay rate� is large the approximate theory remains accurate because the temperatureC
is small. As the slab’s temperature is nearly uniform in this limit the theoretical electrical-field
amplitude (3.13) is very close to the exact numerical value. The large decay of the electric-
field amplitude results in a non-symmetric temperature profile though. However, becauseC
is small the approximate analytical solution predicts a temperature maximum which is very
accurate even though the analysis assumes a symmetric temperature profile.

For smaller values of� and larger values of� the solution lies on the upper (hot) branch of
the S-shaped curve. Even though the assumptions underlying the approximate solution have
broken down in this regime, the approximate analytical solutions are still reasonably close to
the numerical results.

4. Conclusion

An approximate analytical model has been developed to describe the steady-state microwave
heating of a one-dimensional slab subject to both convective and radiative heat loss. The
approximate model incorporates the Arrhenius law as the temperature dependency for the
electrical conductivity and the thermal absorptivity. The approximate solutions for the steady-
state electric-field amplitude and the temperature are in excellent agreement with the full
numerical solutions over a range of examples. In particular, the approximate temperature
versus power relationship gives excellent predictions on the lower branch of the S-shaped
curve, including the critical power level at which thermal runaway occurs. On the upper branch
of the S-shaped curve the theoretical predictions show some variation from the numerical
solutions but are still quite close. The approximate solutions require about two orders of
magnitude less computational effort than does the steady-state numerical solutions hence the
approximate model allows an accurate prediction of thermal runaway to be obtained at a much
smaller computational cost.

The one-dimensional model, although idealised, lays the ground work for the development
in the future of approximate solutions for more physically realistic two and three dimensional
slabs and blocks. These higher-order analytical solutions can be obtained by extending the
Galerkin technique used here. The resulting approximate solutions however, will be longer
and more complicated than those obtained here in the one-dimensional case. The two and three
dimensional approximate solutions will allow the accurate prediction of thermal runaway in
real industrial heating problems for which the full numerical solution would be computation-
ally prohibitive. This is particularly valuable if real time control over the industrial microwave
heating application is required.
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A. Appendix: The numerical scheme

The accuracy of the approximate analytical solutions obtained in Section 3 are examined by
comparison with numerical solutions of the steady-state version of the governing Equations
(2.9) with boundary conditions (2.11). The steady-state solution is

T = [ti]; U = [ui]; i = 1; : : : ; n;

where

ti = T (�1+ (i� 1)�x);

ui = U(�1+ (i� 1)�x);

n = 1+
2
�x

(A.1)

and�x is the spatial grid size. A centred finite-difference scheme is used for the spatial
discretisation of the governing Equations (2.9) and boundary conditions (2.11). This results
in the discretised equations having the matrix form

AT = b; BU = d; (A.2)

where the matricesA andB have elements

ai;i = 1; ai;i�1 = ai;i+1 = �
1
2; i = 2; : : : ; n� 1;

bi;i = 1� (�x)2k2
1(1+ i�f(ti));

bi;i�1 = bi;i+1 = �
1
2; i = 2; : : : ; n� 1;

a1;1 = 1+�xBi +�xS(t31 + 4t21 + 6t1 + 4);

an;n = 1+�xBi +�xS(t3n + 4t2n + 6tn + 4);

a1;2 = an;n�1 = �1;

b1;1 = 1�
�xki

2
+

(�x)2k2
1

2
(1+ i�f(t1));

bn;n = 1�
�xki

2
+

(�x)2k2
1

2
(1+ i�f(tn));

b1;2 = bn;n�1 = �1;

(A.3)

with all other elements equal to zero. The vectorsb andd have elements

bi = (�x)2�f(ti)juij
2; i = 1; : : : ; n;

d1 = 2ik�x; di = 0; i = 2; : : : ; n:
(A.4)
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The system of coupled nonlinear Equations (A.2)–(A.4) is solved via the iteration scheme

A(p)T(p+1) = b(p); B(p)U(p+1) = d(p); p = 1;2; : : : ; (A.5)

where the initial matrices and vectors,A(0); B(0);b(0) andd(0), are evaluated at the ambient
temperature of zero. The iteration scheme (A.5) is assumed to have converged when the
difference in the temperature at the centre of the slab over two iterations is less than a small
tolerance".���t(p+1)

n

2
� t

(p)
n

2

��� < ": (A.6)

The scheme (A.5) normally takes between 10 and 20 iterations to converge using (A.6) with
" = 1� 10�5.
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